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Abstract

The behaviour of the amplitude-frequency characteristics of families of periodic solutions, produced from the equilibrium position
of a system, is established by a qualitative investigation of the equation of the oscillations of a pendulum, the length of which is an
arbitrary periodic function of time. The non-local conditions for their stability and instability, expressed in terms of the amplitude
and frequency of the oscillations, are obtained. The results are used when discussing the parametric and self-excited oscillatory
model of a swing. In the parametric model the length of a swing is a specified periodic function of time, and in the self-excited
oscillatory model it is a function of the phase coordinates of the system. For an appropriate choice of these functions, both systems
have a common periodic solution. It is shown that the parametric model leads to an erroneous conclusion regarding the instability
of the periodic mode, which is in fact realized in the oscillations of a swing, whereas the self-excited oscillatory model indicates its
stability.
© 2007 Elsevier Ltd. All rights reserved.

The majority of investigations of the oscillations of a pendulum, the length of which varies periodically (for example,
Refs 1–7) have been carried out by constructive, mainly asymptotic, methods, on the assumption that the variation of
the length of the pendulum or the amplitude of its oscillations are small (i.e. the system is quasi-conservative or quasi-
linear). The question of the permissible value of these small parameters and, consequently, of the range of applicability
of the results obtained, as a rule, remains open.

In this paper we carry out a rigorous qualitative investigation of this system, free from these assumptions; the
majority of the results obtained hold for any law of variation of the length of the pendulum.

1. Formulation of the problem

Preliminary results. The equation of the oscillations of a pendulum, the length of which varies periodically, can be
written in the form

(1.1)

Here x = x(t, �) is the angular coordinate ẋ = dx/dt, l(�t) = l(�t + 2�) is the distance from the suspension point to
the centre of gravity (the length) of the pendulum, g is the acceleration due to gravity, � > 0 is a parameter, and the
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function �(x, ẋ) describes non-conservative forces, which are assumed to be dissipative, i.e.

(1.2)

When there are no dissipative forces (� = 0), Eq. (1.1) takes the form

(1.3)

We will investigate the relation between the periodic solutions of Eqs (1.1) and (1.3). Suppose x(t) − x(t + T) is the
solution of Eq. (1.3); the following equation in variations corresponds to it

(1.4)

We will assume that the multipliers �i(i = 1, 2) of Eq. (1.4) are complex. Then, as is well known, |�i| = 1, in which
case Eq. (1.4) is strongly stable (i.e. stability is maintained for fairly small perturbations l(�t) and r(�t)). Since, by
virtue of the inequalities �i �= 1 Eq. (1.4) has no T-periodic solutions, them, by Poincaré’s theorem on the continuation
of solutions with respect to a parameter, Eq. (1.1) has a unique solution x(t, �) = x(t + T, �) for sufficiently small �,
such that x(t, 0) = x(t).

We will establish a relation between the stability of the solutions x(t) and x(t, �). The stability of the solution x = x(t,
�) is defined by the equation in variations

(1.5)

Since the multipliers �i(�) are continuous in �, for sufficiently small � they remain complex-conjugate, and
consequently |�1(�)| = |�2(�)|. As is well known, �i(�) are the roots of the characteristic equation

where x1(t, �) and x2(t, �) are the solutions of Eq. (1.5), which satisfy the conditions

while B(�) is defined by Liouville’s formula

With condition (1.2) b(t, �) > 0, and hence

(1.6)

and, consequently,

(1.7)

When � increases this inequality and, consequently, the uniqueness of the continuation of x(t, �) with respect to
the parameter �, is retained, so long as the multipliers �i(�) remain complex. The multiplier �1(�) may reach the
point � = 1 or � = −1, only moving along the real axis; in this case, by virtue of the inequalities (1.6) and �i(�) �= 0 the
multiplier �2(�) lies correspondingly in the interval (0, 1) or (−1,0). In the first case further continuation of the family
x(t, �) with respect to � is, generally speaking, impossible; in the second case at this point a family of 2T-periodic
solutions usually branches out from the T-periodic family considered.

Hence, the high stability of the solution x(t) of Eq. (1.3) guarantees the existence and asymptotic stability of the
family of solutions x(t, �) of Eq. (1.1) up to the boundary of its existence or up to the bifurcation point.

A similar situation occurs if the solution x(t) is unstable and �i �= ±1. Here the multipliers are real, and one of them
is greater than unity in modulus. Consequently, when � increases the multipliers move along the real axis; instability
of the family x(t, �) is maintained so long as �i(�) �= ±1.
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Fig. 1.

Thus, the existence and stability of the family of periodic solutions x(t, �) of Eq. (1.1) are determined by the
existence and stability of the corresponding solution for � = 0, so henceforth we will confine ourselves to investigating
Eq. (1.3) when only the parameter � varies.

We will consider families of periodic solution xk(t, �) of Eq. (1.3), produced from the equilibrium position of the
system (xk(t, �) → 0 as � → �k). The quantities �2k − 1 and �2k are the boundaries of the k-th region of parametric
resonance of the linearized system, i.e. when � ∈ (�2k − 1, �2k) the linearized equation is unstable, and when � ∈ (�2k,
�2k + 1) it is stable. The inequality �2k − 1 ≥ �2k > �2k + 1 holds, and in the generic case �2k − 1 > �2k (Fig. 1).

Assuming � = �t, � = 1/�, we reduce Eq. (1.3) to the form

(1.8)

where the prime denotes differentiation with respect to �.
For infinitely small |x| Eq. (1.8) becomes the corresponding linearized equation

(1.9)

Suppose x(�) is a periodic solution of Eq. (1.8). It can be shown by direct substitution that the function x(�) also
satisfies the linear equation

(1.10)

The following equation in variations corresponds to the solution x(�)

(1.11)

We will recall some facts of the theory of the stability of equations with periodic coefficients,8 which we will use
below. Consider the equation

(1.12)

Assuming

we reduce Eq. (1.12) to canonical form

(1.13)

The multipliers of Eq. (1.13) are the roots of the characteristic equation

(1.14)

where A(�) is the characteristic function, and (z11(�, �) and z22(�, �) are the diagonal elements of the matrix Z(�, 0,
�) of Eq. (1.13), where Z(0, 0, �) = I is the unit matrix). The multipliers are complex and, consequently, Eq. (1.13) is
strongly stable provided

(1.15)

We will assume that r(�) ≥ 0, in which case the matrix H(�) is negative-definite. For the equation
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Fig. 2.

the function A(�) has the form shown in Fig. 2 (Ref. 8, Chapter 7, Fig. 37). It is easy to show that �0 = 0 for Eq. (1.13)
(where H0(�) = 0). In the generic case �2k − 1 < �2k, but in principle the equalities �2k − 1 < �2k are possible.

It follows from Fig. 2 and condition (1.15) that Eq. (1.13) is strongly stable when � ∈ (�2k, �2k + 1) and unstable
when � ∈ (�2k + 1, �2k + 2), k = 0, 1, 2, . . ..

Since A(�) = 1 when � = �k, k = 3, 4, 7, 8 . . ., we have �1 = �2 = 1, and hence Eq. (1.13) has the solution

When � = �k, k = 1, 2, 5, 6, . . . we have A(�) = −1, �i = −1, and therefore

Hence, �k are the eigenvalues of the periodic and antiperiodic boundary-value problem for Eq. (1.13).
These boundary-value problems are self-conjugate, and hence positive eigenvalues decrease as r(�) increase. Since

1 > sin x/x > cos x when |x| < �, x �= 0, then, almost everywhere

(1.16)

whence it follows that

(1.17)

where �k(r0), �k(r1) and �k(r2) correspond to Eqs (1.9), (1.10) and (1.11).

2. The existence and stability of periodic oscillations of a pendulum

As was noted above, in the generic case �2k − 1 < �2k. Then, in a sufficiently small neighbourhood of the equilibrium
position a unique family xk(t,�) of periodic solutions of Eq. (1.3) exists such that xk(t, �) → 0 as � → �k. The generating
solutions of the linearized system are pairwise periodic and antiperiodic; we will consider families which preserve
these properties, i.e.

(2.1)

and

(2.2)

The purpose is to obtain non-local criteria of the existence and stabilities of these families. When deriving these
criteria we will consider the corresponding families of solutions of Eq. (1.8), i.e.

They serve as solutions of the boundary-value problems for Eq. (1.8) with the conditions

(2.3)

for 	 = +1 and 	 = −1 respectively.
As is well known, these solutions are uniquely continuable with respect to the parameter �, if the corresponding

boundary-value problems for the equation in variations (1.11) (where x = xk(�, �)) do not have non-trivial solutions,
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i.e.

(2.4)

or

(2.5)

Suppose Ak(�) = max
t

|xk(t, �)| is the amplitude of the solution xk(t, �).

The following theorem gives the sufficient conditions of continuability of the solutions xk(t,�) (xk(t, �) = 0) with
respect to �.

Theorem 1. The solutions xk(t,�) are uniquely continuable with respect to the parameter � in the direction of its
decrease, so long as

(2.6)

(2.7)

(2.8)

(2.9)

Proof. We will first show that, for sufficiently small amplitudes, the parameter � increases along the family of
solutions xk(�, �). Since the solution xk(�, �) satisfies Eq. (1.10) and boundary conditions (2.3), the value of � is
equal to the eigenvalue of the corresponding boundary-value problem, i.e. � = �j(r1) for certain j = j(�). Since xk(�,
�) → 0 and r1(�) → r0(�) when � → �k(r0), then �j(r1) → �j(r0), and hence j(�1) = k for small |� − �k|. But, by virtue
of inequalities (1.17)

which it was required to prove. �
We will show that inequalities (2.6)–(2.9) guarantee that conditions (2.4) and (2.5) are satisfied and thereby the

non-local continuity of the solution xk(�, �) with respect to �. On account of inequalities (1.17) �k(r1) → �k(r2), and
hence conditions (2.4) or (2.5) are necessarily satisfied, so long as

(2.10)

where �−
k (r2) is the closest eigenvalue of the corresponding problem on the left of �k(r2).

We will first consider the solutions xk(�, �) when k = 5, 7, . . .. As � increases the first condition of (2.10) may break
down if �k(r1) = �k + 1(r1) for certain � = �*, and as a result when � → �* instead of � = �k(r1) the equality � = �k + 1(r1)
may be satisfied, which does not guarantee the required inequality � < �(r2). By virtue of the first condition of (2.8)
and inequalities (1.17) we have

i.e. the first condition of (2.9) is satisfied. As can be seen from Fig. 2, �−
k (r2) = �k−3(r2) when k = 5, 7, . . .; taking into

account the fact that � = 1/�, �k − 3(r0) = 1/�k − 3, we have from the second condition of (2.8)

(2.11)

It is obvious that �k(c2r2) = �k(r2)/c for any c > 0, and hence, taking inequality (2.11) into account, we obtain the
required inequality

When k = 1, 3 there are no positive eigenvalues on the left of �k(r2), and hence conditions (2.4) and (2.5) are ensured
by the first inequality of (2.6). Nevertheless, the condition A3(�) ≤ �/2 is included in the system of conditions (2.7),
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because it guarantees the inequality r2(�) ≥ 0 (otherwise it is possible that �0 > 0 (Fig. 2), so that when the first condition
of (2.7) is satisfied the solution x3(�, �) is only continuable up to �0).

The theorem for the solutions xk(�, �) for k = 2, 4, 6, . . . is proved similarly. Here the eigenvalues closest to the
left and the right of �k(r2) are equal to �k − 1(r2) and �k + 3(r2) (Fig. 2), and therefore conditions (2.8) are replaced by
conditions (2.9). The theorem is proved.

Note the following fact. Solutions (2.1) have a minimum period T = 2�/�; under the conditions of Theorem 1 the
corresponding multipliers �i �= 1 and consequently, the continuation of these solutions with respect to � is unique.
However, they do not exclude the equalities �1 = �2 = −1; in this case solutions with period 2T may branch out from
the family considered.

The solutions (2.2) have a period 2T; however, taking into account the equality cos x = cos(−x) it is easy to verify
that the minimum period of the coefficients of the corresponding equation in variations is equal to T. The conditions
of the theorem exclude the equality �1 = �2 = −1, but do not guarantee the conditions �i �= 1, and hence for certain �
solutions with period 2T, not satisfying relation (2.2), may branch out from the family considered.

Since the trajectories of Eq. (1.3) cannot pass through the singular points x = ±�, x′ = 0, the amplitude-frequency
characteristics of the solutions xk(t, �) satisfy the inequality Ak(�) < �. If the family xk(t, �) is continuable to � = 0,
then A∗

k = lim Ak(�) = � as � → 0. In fact, when A∗
k < � in Eq. (1.10) r1(�) ≥ gl(�)(sin A∗

k)/A∗
k > 0, and hence the

corresponding eigenvalue �1(r1) < 
 and, consequently, � = �−1
1 (r1) > 
−1.

We will determine the nature of the solutions considered.

Theorem 2. The solutions x2k − 1(t, �) and x2k(t, �) for k = 1, 2, . . . have k zeros and k extrema in [0, 2�/�].

Proof. As was shown above, the generating solutions x2k − 1(t) and x2k(t) for k = 3, 4, 7, 8, . . . are the eigenfunctions
of the periodic boundary-value problem for Eq. (1.9). For the latter, the assertion of the theorem and the number of
zeros follows from the Sturm-Liouville theory. For continuous continuation of the family xk(t, �̇) with respect to the
parameter � the number of zeros is maintained, otherwise xk(t∗, �∗) = xk(t∗�∗) = 0 for certain t* and �*, which is
possible provided xk(t, �*) ≡ 0.

Suppose t1 and t2 are neighbouring zeros of the solution xk(t, �), and when t* ∈ (t1, t2) it has an extremum. Taking
into account the fact that x(t*) = 0, we obtain

Since sin x(t) > 0 in (t1, t2 and l(t) > 0, then x(t) > 0 in (t1, t*) and ẋ(t) < 0 in (t*, t2). Hence, there is only one
extremum between neighbouring zeros of the solution x(t), i.e. xk(t, �) varies monotonically between neighbouring
extremum values. Taking the previous result into account we obtain that the solutions x2k − 1(t, �) and x2k(t, �) have k
extrema in [0, 2�/�]. The theorem is proved.

We will estimate the stability of the solutions. �
Theorem 3. For conditions (2.9) the solutions xk(t, �) are unstable for k = 2, 4, . . ., while for k = 1, 3, . . . they are
stable, so long as

(2.12)

and

(2.13)

Proof. As was noted above, Eq. (1.13) is stable when � ∈ (�2k, �2k + 1) and unstable when � ∈ (�2k + 1, �2k + 2), k = 0,
1, 2, . . .. When proving Theorem 1 we showed that, for condition (2.9) for the solutions xk(t, �) for k = 2, 4, . . . we
have the condition � ∈ (�2k + 1, �2k + 2), which also proves their instability.

For the solutions xk(t, �) for k = 5, 7, . . . the second inequality of (2.8) guarantees the condition � ∈ (�2k, �2k + 3). As
can be seen from the proof, to obtain the required stability condition � ∈ (�2k, �2k + 1) it is sufficient to replace �k − 3
by �k − 1 in this inequality. Condition (2.13) thereby obtained also guarantees the stability of the solution x3(t, �). For
the solution x1(t, �) the first condition of (2.12) ensures the inequality � < �1, while the second condition ensures the
non-negativity of r2(�). The theorem is proved. �
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The results obtained above hold for any law of variation of the length of the pendulum. We will now assume that
l(�t) is an even function, i.e.

(2.14)

For example, if the length varies harmonically, we can assume l(�) = l0 + � cos �.
We will assume that the conditions of Theorem 1 are satisfied in addition to the condition (2.14).

Theorem 4. One of the families x2k − 1(t, �) and x2k(t, �), k = 1, 2, . . . is even and the other is odd.

Proof. We first note that if x(�) is a unique periodic or antiperiodic solution of Eq. (1.8), it is even or odd. In fact, we
put x(�) = x1(�) + x2(�), where x1(�) = x1(−�) and x2(�) = −x2(−�). Substituting this expression into Eq. (1.8) and taking
condition (2.14) into account, we obtain that each of the functions x1(�) and x2(�) separately satisfies this equation,
and hence x(�) = x1(�) or x(�) = x2(�).

We will show that the generating solutions x2k − 1(�) and x2k(�), k = 1, 2, . . . cannot be simultaneously even or odd.
In fact, the even solutions are eigenfunctions of the boundary-value problem for Eq. (1.10) when x′(0) = x′(2�) = 0. By
the Sturm-Liouville theory, any two such functions have a different number of zeros; nevertheless, in view of Theorem
2, for the solutions x2k − 1(�) and x2k(�) the number of zeros is the same. It can similarly be shown that both solutions
x2k − 1(�) and x2k(�) cannot be odd. The theorem is proved. �

3. Fundamental parametric oscillations

We will consider the solutions of the families (2.2) for k = 1, 2, corresponding to the fundamental parametric
resonance, in more detail (note that the first qualitative results of this kind were obtained in Ref. 9).

It follows from Theorem 3 that these solutions have two zeros and two extrema in the half-interval [0, 4�/�). The
following theorem shows that these solutions are continuable with respect to � down to � = 0.

Theorem 5. For condition (2.14) the solutions of the family (2.2), k = 1, 2 are uniquely continuable with respect to �
down to � = 0. The amplitudes Ak(�) decrease monotonically in (0, �k).

Proof. According to Theorem 4 the functions of one of the families x1(�, �) and x2(�, �) are even, and the other is
odd. Since the even antiperiodic solution becomes odd when the origin of coordinates is shifted by �, it is sufficient to
prove the theorem for odd solutions; we will denote them by x(�, �).

Since the function x(�, �) has two zeros in [0, 4�), it retains its sign in (0, 2�) and satisfies the conditions

(3.1)

Consequently, � = �1(r1) and x(�, �) are the first eigenvlaue and the eigenfunction of the boundary-value problem for
Eq. (1.10) with conditions (3.1). By virtue of inequalities (1.17) �1(r1) < �1(r2), and consequently the condition of
continability of x(�, �) with respect to the parameter � (� �= �k(r2), k = 1, 2, . . .) is satisfied when � ∈ (0, ∞).

Without loss of generality, we will assume that x(�, �) > 0 when � ∈ (0, 2�). According to Theorem 3 the function
x(�, �) has one extremum in (0, 2�); since l(�) = l(2� − �), it is easy to show that x(�, �) = x(2� − �, �), and hence this
extremum is reached when � = �, i.e. the amplitude of the solution A(�) = x(�, �).

Differentiating Eq. (1.8) with respect to the parameter �, we obtain that the function x�(�, �) = ∂x(�, �)/∂� satisfies
the equation

(3.2)

Taking into account the fact that x�(�, �) satisfies condition (3.1), the solution of Eq. (3.2) in (0, 2�) can be
represented in the form

(3.3)

where G(�, s) is Green’s function of the corresponding boundary-value problem (1.11), (3.1).
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Fig. 3.

As is well known, the function G(�, s) is continuous when �, s ∈ [0, 2�], and satisfies Eq. (1.11)when � �= s and the
conditions

(3.4)

It can be shown by a direct check that

(3.5)

where x(�, s) is the solution of Eq. (1.11), which satisfies the conditions x(s, s) = 0, x′(s, s) = 1/l2(s).
By virtue of the condition �, �1(r2) any solution of Eq. (1.11) in [0, 2�] has no more than one zero, and hence x(�,

s) > 0 when 0 ≤ s < � < 2�. Taking this inequality into account, we obtain from relations (3.5) and (3.4) that G(�, s) < 0
when 0 ≤ s < � < 2� and, consequently, x�(�, �) > 0 (x(�, �) > 0). Hence, the solution x(�, �) increases with respect to �,
i.e. the corresponding solution x(t, �) decreases with respect to � in (0, 2�/�), and hence its amplitude A(�) = x(�/�,
�) also decreases. The theorem is proved. �

As shown above, A∗
k = lim Ak(�) = � when � → 0, k = 1, 2. Hence, the amplitude-frequency characteristics of the

solutions considered have the form shown in Fig. 3 (here we have taken l(�t) = (3 − 0.5 cos �t) m and g = 9.81 m/s2).
We emphasise that the theorem does not exclude branching of the families considered for certain �; the uniqueness

of the continuation merely denotes that the new branches do not possess this symmetry (i.e. they are neither even nor
odd).

We will assume in addition that the length of the pendulum varies monotonically between the extremum values;
without loss of generality we will assume that

(3.6)

Note that this condition uniquely defines the origin of �.
We will investigate the stability of the above solutions.

Theorem 6. When conditions (2.14) and (3.6) are satisfied the solutions x1(t, �) are odd and x2(t, �) are even. The
solutions x1(t, �) are stable when A1(�) ≤ �/2, and x2(t, �) are unstable for all �.

Proof. Suppose x(�, �) is odd from the solutions x1(�, �) and x2(�, �). As shown above, x(�, �) = x(2� − �, �), and
hence, in the corresponding equation in variations (1.11)

(3.7)

In view of the first equality of (3.7) the even eigenfunction corresponds to the one of the eigenvalues �1(r2) and
�2(r2) of the antiperiodic boundary-value problem for Eq. (1.11), while the odd eigenfunction corresponds to the other.
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We will denote them by u(�) and v(�) respectively. In view of the second equality of (3.7) we have

Hence, the functions u(�) and v(�) satisfy the relations

(3.8)

and

(3.9)

where �1 = �1, �1 = �2 or �1 = �1, �1 = �2.
Without loss of generality we will assume that

(3.10)

Then

(3.11)

We will show that the following condition is satisfied for the solution considered

which, in accordance with Fig. 2, guarantees the inequality |A(�)| < 1 and thereby the stability of the solution x(�, �).
Since the function x(�, �) satisfies Eq. (1.10), and by the conditions x(0, �) = x(2��) = 0 it also has no zeros in (0, 2�),
we have � = �1(r1). By virtue of condition (1.17) � = �1(r1) < �1(r2); we will show that � < �1(r2).

In Eq. (1.8) we put x = x(�, �) and differentiate with respect to �. We obtain that the function y = x′(�, �) satisfies the
equation

(3.12)

We multiply both sides of this equation by u(�) and Eqs (3.8) by y(�) and integrate the difference of the relations
obtained in the limits from 0 to �. After integration by parts we obtain

(3.13)

Since x(�, �) = −x(−�, �), we have y′(0) = x′′(0) = 0. Taking boundary conditions (3.8) and (3.9) into account as
well as the equality l′(0) = l′(�) = 0, we obtain that the term outside the integral in relation (3.13) is equal to zero. For
conditions (3.6), (3.10), (3.11) and |x(�, �)| ≤ �/2, the integrand on the left-hand side of relation (3.13) is positive,
while that on the right is negative, so that � < �1(r2). Hence, the odd solutions x(�, �) with amplitudes A ≤ �/2 are
stable.

According to Theorem 2, in the general case for small amplitudes the solutions x1(�, �) are stable while the solutions
x2(�, �) are unstable, and therefore x(�, �) = x1(�, �). Hence, the solutions x1(t, �) are odd and the solutions x2(t, �)
are even.

We will show that the solution x2(t, �) is unstable. Since x2(�, �) satisfy Eq. (1.10) and the conditions x′(0, �) = x(�,
�) = 0, we have � = �1(r1). by virtue of relation (1.17) �1(r1) < �1(r2) we will show that � < �1(r2).

As before we obtain

(3.14)

where y = x′
2(�, �), r2 = gl(�) cos x2)(�, �). In this case the integrand on the right-hand side is negative. By Theorem

3 y(�) = x′
2(�, �) < 0 in (0, �), and hence when |x2(�, �)| ≤ �/2 the integrand on the left-hand side is also negative.

Consequently, � > �1(r2), and hence, taking into account the inequality � < �1(r2) we have � ∈ (�1(r2), �2(r2)).Hence,
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the solutions x2(t, �) with amplitudes A2 ≤ �/2 are unstable.We will show that the instability is also maintained when
A2 > �/2. In this case r2(�) < 0 in [0, �*) and r2(�) > 0 in (�*, �], where x2(�*, �) = �/2. By virtue of Eq. (3.9)

(3.15)

This inequality cannot be violated since, if v′(�) = 0 when � ∈ (�*, �), from Eq. (3.9), taking into account the
inequality v(�) > 0, we obtain v′(�) < 0, which contradicts the boundary condition (3.9). Consequently, when �
increases, the right-hand side of Eq. (3.14) retains its sign and of course, the inequality is maintained, and together
with this the instability of the solution x2(t, �). The theorem is proved. �

Note that physically the difference between the solutions considered is as follows. In view of relations (3.6) and
(2.14) the length of the pendulum l(�t) increases monotonically when t ∈ (0, �/�) and decreases when t ∈ (�/�, 2�/�).
Since

those oscillations of the pendulum for which its length is a minimum at the instant of crossing the equilibrium position
and a maximum at the limiting positions correspond to the solution x1(t, �). Conversely, since

for the solution x2(t, �) the length of the pendulum is a minimum at the extreme positions and a maximum in the
equilibrium position.

The condition of stability A1(�) ≤ �/2 of the solutions x1(t, �) is sufficient; it does not exclude the stability of the
solutions with amplitudes A1(�) > �/2. Nevertheless, it is easy to show that in any case the solutions x1(t, �) with
amplitudes close to �, are unstable. In fact, the solution x1(�, �) increases in (0, �) and decreases in (�, 2�); suppose
�1(�) ∈ (0, �) and �2(�) ∈ (�, 2�) are roots of the equation x1(�, �) = �/2. As shown when proving Theorem 5, the
solution x1(�, �) increases with respect to �, and hence �1(�) → 0, �2(�) → 2� when � → ∞. It is clear that in the
corresponding Eq. (1.11), r2(�) < when � ∈ (�1, �2). As is well known,8 if r2(�) < 0 for all �, the characteristic constant
A(�) > 1, i.e. Eq. (1.11) is unstable. It is obvious that the same conclusion also holds for sufficiently small �1(�) and
2� − �2(�).

For example, when l(�t) = (3 − 0.5 cos �t) m numerical calculations showed that the solution x1(t,�) is stable when
A1 < A∗

1 = 2.29 and unstable when A1 ∈ (A∗
1, �). The solution x2(t, �) is unstable for all �; this conclusion agrees

completely with the assertion of Theorem 6. The amplitude-frequency characteristics of these solutions A1(�) and
A2(�) are shown in Fig. 3. In Fig. 4 we show graphs of the functions l(�) and also of the functions x1(�) and x2(�)
for � = 3.86 s−1 and � = 3.02 s−1 respectively. As can be seen, for the solution x1(�) the length of the pendulum is a
minimum when passing through the equilibrium position and a maximum for the solution x2(�).

Fig. 4.
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4. A mathematical model of a swing

A swing can be represented with a reasonable degree of accuracy by a physical pendulum. When pumping the
swing, the rider is squatting when descending and standing when ascending, and as a result the distance L from the
centre of gravity of the system to the suspension point varies as a function of the coordinate and the velocity of the
swing, i.e. L = L(x, ẋ). Hence, the oscillations of a swing can be described by the equation

(4.1)

which represents the self-excited oscillatory model of the swing.
Suppose the function x(t) = x(t + T) describes the periodic oscillations of the swing. It is obvious that the function

L(x(t), ẋ(t)) is periodic with period T/2, and hence the equation of parametric oscillations of the pendulum (1.1) when
l(t) = L(x(t), ẋ(t)) has the same solution x(t). As a consequence of this analogy, the swing is often sited as an example
of the parametric excitation of oscillations and Eq. (1.1) is used to describe a swing. Some authors also assume the
parametric and self-excited oscillatory models to be equivalent.

Thus, it has been asserted3 that a swing “can be regarded as a mathematical pendulum, the length of which varies
periodically”, and references are made to the corresponding equation of the form (1.1). At the same time, it has been
noted further that, since the length of the swing can be expressed by a unique function of the phase coordinates, it “can
serve as an example of an oscillator with pure self-excitation” and Eq. (4.1) has been used to investigate the pumping
of a swing. The same point of view is expressed in Ref. 4, where the swing (being “the most visual parametric system”)
is investigated using Eq. (1.1) (Ref. 4, pp. 191–204), but it is then asserted that the oscillations of the swing can also
be assumed to be self-excited oscillations (Ref. 4, p. 205).

It is interesting to analyse the relation between the parametric and self-excited oscillatory models of a swing. This
problem was considered for the first time in Ref. 10; below it is investigated in more detail, and the theoretical analysis
is supplemented by numerical investigations of these models. Note that the discussion below does not relate to non-
stationary problems of the pumping and damping of the swing; in the latter the length control law is constructed in
the form of a function of the phase coordinates L = L(x, ẋ) (a rigorous solution of this optimal control problem was
obtained in Ref. 4).

It is obvious that different models of the swing can be regarded as equivalent provided they lead to the same
qualitative conclusions regarding the properties of their common periodic solution x(t) and, primarily, with regard to
its stability. Nevertheless, it turns out that, within the framework of the parametric model, this solution is unstable,
which contradicts the obvious stability of the oscillations of actual swings.

In fact, since, when the rider is squatting, when the centre of gravity of the system drops, it is shifted downwards,
the length of the swing L(t) reaches its maximum value when it passes through the equilibrium position, whereas at the
instant of greatest deflections from the vertical the length is a minimum. As was shown above, this mode of operation
corresponds to the solution x2(t, �) of the problem of the parametric oscillations of a pendulum. But, by Theorem 6,
this solution is unstable for all �, which also proves the above assertion.

The reason for this contradiction is that the stability of the solution x(t) of Eq. (1.1) is determined by the equation in
variations (1.5), whereas the equation in variations for Eq. (4.1) also contains the derivatives L(x, ẋ) and L2(x, ẋ) with
respect to x and with respect to ẋ, and therefore from a mathematical point of view the use of the parametric model of
a swing is equivalent to neglecting these terms. As can be seen, the latter change the character of the stability, and as
a result the unstable oscillations of a pendulum correspond to stable oscillations of a swing.

Hence, the mathematical model of a swing in the form of a pendulum with periodically varying length can only be
used in the case when the length is a periodic function of time, independent of the phase coordinates of the system (such
a model can be realized by placing a robot on a swing with a specified program of periodic squatting). By Theorem 6
those oscillations of a pendulum are stable for which its length at the instant it passes through the equilibrium position
is a minimum (the solution x1(t) corresponds to this); consequently, under steady operating conditions the robot will be
standing on descent and squatting on the ascent. As shown above, these oscillations become unstable, beginning from
a certain value A∗

1 ∈ (�/2, �) (whereas one can observe stable oscillations of the swing for any amplitudes A < �).
We will now analyse the self-excited oscillatory model of a swing. Putting
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in Eq. (4.1), we can write it in the form of a system of first-order equations

(4.2)

A general qualitative investigation of system (4.2) is outside the scope of this paper, and hence we will confine ourselves
to a numerical analysis. We put

(4.3)

where 
 and � are small positive constants and � is the amplitude of the change in the length of the swing with respect
to the mean value L0. Note that the choice of the function L(x1, x2) is due to the fact that it agrees qualitatively with the
actual law of variation of the length of the swing under steady oscillations, namely: the length is a minimum for the
greatest deflections (L = L0 − � when x2 = 0) and a maximum close to the equilibrium position (L = L0 + � for x1 = −

(x2 > 0) or x1 = 
 (x2 < 0)) (the need for a small displacement of the maximum with respect to the equilibrium position
x1 = 0 is due to the fact that there is dissipation in the system).

Numerical calculations were carried out for L0 = 3 m, � = 0.5 m, 
 = 0.05 and � = 0.1. It was established that the
system has one limit cycle with amplitude A+ = 0.969; in the upper part of Fig. 5 we show the corresponding periodic
solution x1(t) and the length L(t) = L(x1(t), x2(t)). As can be seen, the period L(t) is equal to half the oscillation period
of the system, and the minima of L(t) correspond to the minimum and maximum of x1(t), while the maxima are close
to the instants of passage through the equilibrium position. Any solution of system (1.1), (1.5) with initial conditions
x2(0) = 0, x1(0) ∈ (0, �) converges to this cycle; the corresponding solutions x1(t) for large and small x1(0) are shown
in Fig. 6.

Hence, the self-excited oscillatory model leads to a correct conclusion regarding the stability of the oscillations of
a swing.

We also considered the oscillations of the system (4.2), (4.3) for L0 = 3 m, � = −0.5 m, 
 = −0.05 and � = 0.1; here
the length of the pendulum is a maximum at its greatest deflections and a minimum when x1 = −
 (x2 > 0) or x1 = 

(x2 < 0). It turns out that this system also has a unique limit cycle, and its amplitude A− = 0.737 (the corresponding
graphs of L(t) and x1(t) are shown in the lower part of Fig. 5). Hence, in principle, one can pump on a swing by squatting

Fig. 5.
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Fig. 6.

on the ascent and standing on the descent. The reason that this mode of operation is not used in practice is obviously
the fact that it is natural and easier to squat when the centrifugal force increases (i.e. when moving downwards) and
not vice versa.
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